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ABSTRACT

A general discussion of the properties of magnetohydrodynamic

flows at low conductivity is given, and then attention is restricted to the

class of such flows satisfying the following conditions:

1. The flow is steady, two-dimensional, inviscid, and only slightly

perturbed from uniform conditions.

2. The magnetic field vector is also two-dimensional and lies in

the plane of the flow.

3. The distortion of the applied field by the induced currents is

negligible.

4. Physical boundaries on the flow are one or two infinite plates

parallel to the flow direction.

5. The conductivity of the fluid is a scalar quantity, but may vary

in a restricted manner with position.

With these assumptions, the perturbations to the flow are calculated

exactly for arbitrary magnetic fields for the cases in which the undisturbed

flow is either incompressible or supersonic. Illustrative examples for

simple magnetic fields are evaluated; for some of these examples the sub-

sonic case is also treated. Another particular example is used to show the

effect of spatially varying conductivity on the flow. The limits of the

applicability of these results are discussed, and general conclusions

regarding the nature of the flow perturbation are drawn.
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EXACT SOLUTIONS TO A CLASS OF LINEARIZED

MAGNETOHYDRODYNAMIC FLOW PROBLEMS

R. H. Levy

Avco-Everett Research Laboratory, Everett, Massachusetts

I. INTRODUCTION

The study of magnetohydrodynamic flow problems in which the

conductivity is small is of interest in such areas as flight magnetohydro-

dynamics, magnetohydrodynamic power generation, magnetohydro-5 6
dynamic pumps and flow meters and some shock tube work. Although

much work has been done on these subjects, there exist surprisingly few

theoretical solutions applicable to this type of problem; this is in marked

contrast to the situation in which the conductivity is taken to be infinite.

Good discussions of the features that distinguish the low conductivity

problems are to be found in the works of Kemp and Petschek 7 and Hains,
8

et al. The most important of these features is the small value of the

magnetic Reynolds number. The effect of this is that the applied magnetic

lResler, Jr., E. L. and Sears, W. R. , J. Aeronaut. Sci. 25, 235-245

(1958).
2 Rosa, R. J., Ph.D. Thesis, Cornell University, Ithaca, New York (1956).
3 Rosa, R. J., Phys. Fluids 4, 182 (1961).
4 Sutton, George W. , ARS Preprint 2005-61 (1961).

5Shercliff, J. A. , United Kingdom Atomic Energy Research Establishment,

Report No. X/R 1052 (1953)
6 Patrick, R. H. and Brogan, T. R., J. Fluid Mech. 5, 289 (1959).
7 Kemp, N. H. and Petschek, H. E., J. Fluid Mech. 4, 553 (1958).
8 Hains, F. D. , Yoler, Y. A. , and Ehlers, E. , Proceedings of the Third

Biennial Gas Dynamics Symposium (1959) (Northwestern University Press,

Evanston, Illinois, Dynamics of Conductivity Gases).



field is only slightly distorted by the flow in the region of interest. In

addition to the magnetic Reynolds number, a further parameter (called

the interaction parameter, see Eq. (9)) is needed to describe the perturba-

tion of the flow from some initial (usually uniform) state.

The procedure of Kemp and Petschek is to write the various flow

and electromagnetic quantities as the sum of zeroth order quantities and

two perturbation terms proportional respectively to the magnetic Reynolds

number and the interaction parameter and then to solve the resultant linear

equations for the perturbation quantities. This general analysis will be

assumed in the present paper, and attention will be confined to the determi-

nation of those perturbations of the flow quantities which are proportional

to the interaction parameter. Similar treatments of the problem are also

given by Ehlers 9 (for the axisymmetric case) and by Morioka 1 0 (for the

two-dimensional case).

The geometrical configurations to be studied were suggested by two

papers of Sherman 1,12 in which a steady two-dimensional uniform slightly

conducting incompressible flow passes through a channel; a magnetic field,

also two dimensional, is applied to the flow and has the general effect of

obstructing it. In the particular case studied by Sherman the magnetic

field was due to a current flowing in a straight wire lying outside the channel

and perpendicular to the flow. In this paper, an exact solution to this

problem is given which agrees closely with the numerical results given by

Sherman for the inviscid case. In addition, a wide selection of more

involved problems are solved analytically. These include cases in which

the applied magnetic field is of arbitrary form (for the incompressible

and supersonic cases), as well as subsonic cases for simple magnetic

field configurations and cases in which the conductivity (which has hither-

to been tacitly considered to be constant) is allowed to vary spatially in a

9Ehlers, F. E. , ARS J. 31, 334-342 (1961).

1OMorioka, S., J. Phys. Soc. Japan 16, 2544-2550 (1961).

1ISherman, A., Advances in the Astronautical Sciences, (The MacMillan

Company, New York, 1961) Vol. 6.
1 2 Sherman, A. , Phys. Fluids 4, 552-557 (1961).
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restricted manner. On the other hand, no boundary layer calculations

based on the computed inviscid pressure gradients are included.

The basic mechanism by which the applied magnetic field retards

the flow is as follows: an electromotive force is induced in the flow in the

direction perpendicular to the plane containing the velocity and the magnetic

field vectors. This electromotive force drives a current through the fluid

which is assumed to be returned at infinity. This may be imagined more

realistically by considering the two-dimensional channel as the limit of a

large annular duct. No externally applied electromotive force is con-

sidered to be present, although such an arrangement might be interesting

experimentally. In the present small perturbation analysis, the electric

current is calculated directly from Ohm's law using the unperturbed values

of the velocity and magnetic field. It is a small quantity, being proportional

to the conductivity. The effect of the current flowing through the fluid in

the presence of a magnetic field is to produce a body force on the fluid,

whose general action is to retard the flow. This body force, which is also

proportional to the conductivity, may then be calculated as a function of

position; and, mathematically, the first order flow problem becomes one

in which a given (non-conservative) body force is applied to the fluid. This

is the specific problem which is solved in this paper for a wide variety of

conditions. It should be noted that in order to calculate the electromagnetic

force on the fluid as a whole to the first order in the interaction parameter

(or, what is the same thing, its reaction at the coil giving rise to the

magnetic field) it is not necessary to calculate the perturbed flow field.

However, in the presence of a physical boundary, there is an additional

force of the first order in the interaction parameter in the form of an

induced pressure which cannot be found without first calculating the flow

perturbation.

The nature of the relation between the electric current and the

electric field (Ohm's law) in an ionized gas has been extensively discussed
13

by Schluter. Kemp and Petschek (loc. cit. ) made use of a simplified

1 3 Schluter, A. , Z. Naturforschg 5a, 72 (1950) and 6a, 73 (1951).
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form ,f Schluter's result applicable to a slightly ionized gas, but in which

nevertheless both Hall and ion slip effects were present. The possibility

of using this form of Ohm's law with tensor conductivity without greatly

complicating the mathematics arose because of a number of special

features of the geometry chosen. In the present case, the use of such an

Ohm's law would add considerably to the mathematics and has, therefore,

been eschewed in the interests of brevity and clarity. In its stead, the

simple form of Ohm's law with scalar conductivity is used. The limit of

applicability of this law is roughly that each electron should suffer at least

one scattering collision per cyclotron period; it is not hard to predict the

general nature of the modification to the present work that would be caused

by an important Hall effect.

While the assumptions used in this paper are, in the above respect,

more restrictive than those of Kemp and Petschek, in another respect they

are less so; for a number of cases of linearized compressible flow, both

subsonic and supersonic have been solved and are presented here. The

basis for the solution of compressible magnetohydrodynamic flow problems

by these techniques may be found in Fishman, et al. 1 4 It will be sufficient

to remark here that, apart from the usual limitations of linearized com-

pressible flow theories, an additional complication arises in view of the

Joule heating of the flow by the induced currents within it. This is par-

ticularly important at high Mach numbers where the relative change in

temperature may be high, leading to large changes in the conductivity.

As an example of this effect, Lin 1 5 predicts that at atmospheric pressure

and temperatures around 5000°K the conductivity of air increases as about

the 10th power of the temperature. At higher temperatures this effect is

considerably less marked.

14 Fishman, F., Lothrop, J. , Patrick, R. and Petschek, H., Avco-Everett

Research Laboratory Report No. 39 (1959).
1 5 Lamb, L. and Lin, S. C. , J. Appl. Phys. 28, 754 (1957).
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II. MATHEMATICAL FORMULATION

On the basis of the remarks of the preceding section, the mathe-

matical formulation of the problem is easily accomplished. Using asterisks

to denote dimensional quantities, and taking Cartesian coordinates x* y* in

the plane containing both the flow and the magnetic field vectors, Ohm's

law shows that the electric current is in the z-direction and is given by:
• * = _Y- ( L *( * /*

J Y - B)

(1)

The equations of motion are:

(2)

(3)
The equation of continuity is:

(4)

The energy equation may be taken to be:

(5)
Finally, a perfect gas with constant y is assumed, so that

(6)

R £adp*/.- -

(7)
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The following non-dimensional quantities are defined:

NY)- Y /, ,z =.z /0 U , = !. B

a= 01 U./'Ls'V

(8)

Then, in terms of the interaction parameter defined by

S-o B, y 0 U

(9)
Equations (1) to (7) become (after elimination of the temperature)

z = o(u by - v'b)

(10)

to (L.at&' +' VI2w)+ I z y=

e'U +- , ) SJby=0 (11)

k B-0 Y x

(12)

(13)

(14)

(-) ds' = [It/o - 1 O/"'j

(15)
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Next, the assumption of small perturbations must be invoked. The

unperturbed flow is taken to be uniform in the x-direction and perturbation

quantities are defined as follows:

X= i+S . 'Sv I+SP

S' Ss P= , M= Sp

(16)
2 2

where M =p 0 U/y p0 is the free stream Mach number. The linearized

(first order in S) flow problem to be dealt with is then defined by the

following equations:

(17)

(18)

(19)

Y. ~Moby

(20)

(¥-')ds = Yo -do

(21)

The specification of the problem is completed by noting that the magnetic

field vector must be irrotational (this is a result of assuming the magnetic

Reynolds number to be negligible) and, of course, solenoidal. Thus:

ob x 6 =0
(22)
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Before proceeding to the solution of any particular problem, certain

general simplifications may be made in the above system of equations.

First, the entropy is given directly from Eq. (20) as:

5~ArMf 
o-x

(23)

Secondly, Eq. (21) may be integrated immediately to give the density in

terms of the entropy (now a known quantity) and the pressure:

e-MZp - £!. .

(24)

Next, the x-component of velocity is given in terms of the (unknown)

pressure and the (known) applied magnetic field by:

- -f o'bd

(25)

Lastly, u, p, and s may be eliminated from Eqs. (17), (19) and

(24) to give:

av

(26)

which, together with Eq. (18), forms a system of two inhomogeneous

partial differential equations for v and i If these can be solved the remain-

ing quantities may all be found directly from relations (23), (24) and (25).

Although these equations are linear in the unknowns, they are non-linear

in the applied magnetic field so that solutions for different field configura-

tions may not be superposed.

III. INCOMPRESSIBLE PROBLEMS

For the present, the conductivity will be assumed constant through-

out the flow so that a may be taken to be unity. Then, for the incompressible

case, Eqs. (18) and (26) reduce to

-8-



(27)

y Sx by

(28)

This system of linear inhomogeneous partial differential equations

is best dealt with by splitting the solution into a particular solution (dis-

tinguished by the subscript p) which will depend only on the form of the

magnetic field, and a complementary solution (distinguished by the subscript

c) which will satisfy the homogeneous part of Eqs. (27) and (28) together

with suitable boundary conditions. It is a remarkable fact that when the

magnetic field satisfies Eq. (22) and vanishes reasonably at infinity a

simple particular integral can always be found; it is

bp bf b,, J Y

(29)

f-0 -80

(30)

Furthermore, the complementary solution may be obtained as

PC + N v +- I ( Y)= ,,('

where w (z) is an analytic function determined by the relevant boundary

conditions. In this paper, as indicated in the introduction, the flow will

always be bounded by one or two infinite planes parallel to the flow. Thus,

the boundary conditions will have the form Iw + vp = 0 for one or two values

of y and all values of x.

A number of illustrative examples of these solutions have been

-9-



16

worked out and are presented by Levy. In the interests of brevity only

two of these will be reproduced here. In both cases the flow is bounded

only by the plane y = 0; the magnetic field in the first case is that due to a

current flowing in a single wire at the point (0, -1). Thus, the physical

distance of the wire from the boundary is y0 ; taking B to be the field

strength at the origin, ioI/27yo, the field components become:

6Y, by : -
+ ('Y + (Y+ (31)

Then

Vp -)(32)

P ((33)

The boundary condition on w (z) is

.1 . r *t~n' x)I'OW = - on y=O
YO + I

(34)

and since w (z) is analytic in the upper half-plane,

Z+- Z2- (35)

From the above the whole perturbed flow may be found at once. It will be

sufficient here to quote the result for the pressure on the wall which is

16 Levy, R. H. , Avco-Everett Research Laboratory, AMP 70 (1962).
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x4 + I 
(36)

Levy (loc. cit. ) has also calculated this flow when an additional

boundary is placed at y = H. The pressure on the lower wall for various

values of H are shown in Fig. 1; the results for H = 6.4 agree fairly well

with those of Sherman except for a small constant displacement which is

probably due to the fact that in his numerical calculations the pressure was

assumed to vanish at some finite negative value of x. The total pressure

drop along the channel is 7r ln (H + 1)/ZH.

The slow vanishing of the field at large distances in the above case

results in the divergence of the drag integral. This difficulty is avoided

in the next example, where a linear dipole with axis parallel to the flow is

placed at the point (0, -1). If Bo is again taken to be the field at the origin,

the components are:

bA -4 i6 + _ _ _ _ (Y + I

,.a +(Y t" 09Ir- (37)

Then

VP (VY(8p= [xz + (V ,),X.3 (38)

2"+ (v t (3 9 )

and, on y = 0

.gj=
(40)

Thus

-3 (41)
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Hence, the pressure on the wall is

p_- •, +L53 t 1+ If (42)

and this is shown, together with the corresponding results for the case of

a channel of height H in Fig. 2. The drag per unit length on the dipole for

the single wall case is (r/8) pU yoS.
A very interesting observation may be made in respect to the

pressure force exerted on the fixed wall (for the single wall case), the

observation being applicable to any magnetic field configuration and not

only the two examples given above. The net force, where the field is

symmetric about the line x = 0 is, of course, zero, but the moment about

the origin exerted by the pressure distribution diverges linearly. Mathe-

matically speaking, this is because the pressure returns to zero only as
-1

x for large x; it is an unexpected result that this behaviour is independent

of the form, or the rate of decay of the magnetic field. It may be shown

that the result is a consequence of the finite displacement of the streamlines

in passing from x = -oo to x = + oo, and always follows where this displace-

ment effect can be exhibited; the displacement of the streamlines results

from the finite velocity defect at x = + oo, which in turn may be deduced

from Eq. (25) with the observation that p must return to zero at x = + o.

Of course, in a practical case the moment actually obtained will be limited

both by three-dimensional effects and by the finite size of the body; however,

it might well turn out that the actual moment might well be more important

than the drag for certain flight applications. A last remark in this connec-

tion is that the phenomenon does not appear in supersonic flow for the

reason that, as will appear, the pressure on the wall at a certain point

depends only on the values taken by the magnetic field along the characteris-

tics leading to the point in question. Thus, if the field is confined to a

finite region, or decays very rapidly, the pressure will behave similarly.

The method of solving Eqs. (27) and (28) used depends on the

existence of the simple form of the particular solution Eqs. (29) and (30).

If this particular solution had not been found, Eqs. (27) and (28) would still

be amenable to solutions using the more powerful transform techniques.

-13 -
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Fig. Z This is the pressure on the lower wall of a channel of a height H
when the flow is impeded by the magnetic field due to a linear
dipole at unit distance below the wall.
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However, a great advantage of the present procedure is the simplicity of

the results which makes for greater understanding of the problem. It will

shortly be seen that the particular solution does not apply to the subsonic

cases so that the subsonic results obtained are much more complicated.

For the incompressible case, other field configurations are easily studied;

and, apart from the results of Levy already referred to, the solution to the

interesting case of two wires with finite separation carrying equal and

opposite currents is presented in the same paper (loc. cit. ).

It appears that simple solutions of the type discussed are also

available for axisymmetric flows. From the paper of Ehlers (loc. cit.

the equations corresponding to Eqs. (27) and (28) may be deduced. They

are

8-1 (43)

and the magnetic field components now satisfy

21 r a r ar(45)

instead of Eq. (22). The analogous particular solution is then

V"'±brf (46)

-(47)
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The application of this result to the particular problem discussed by

Ehlers in which the fluw of a fluid down an infinite pipe is impeded by the

magnetic field due to a concentric circular coil is not possible in closed form

owing to the complicated form of the field components. However, the

numerical solution to this problem would presumably be easier by this

method; as above, it involves only the use of vp calculated on the boundary

as the boundary condition in a potential flow problem. It can be shown that

for flows along the exterior of an infinite pipe the pressure returns to zero
-2

like x ; in view of the geometry no net moment is exerted by this force.

IV. SUBSONIC PROBLEMS

The equations governing the subsonic case with uniform conductivity

are

bXt 'P " bby (48)

X y (49)

If the coordinates and variables are transformed by the Prandtl-

Glauert rule the field components will no longer satisfy the relation (22).

In these circumstances, no particular solution of these equations has been

found for arbitrary magnetic fields. However, solutions may be obtained

when the field components are given by Eqs. (31) or (37) for in both these

cases transformation to polar coordinates with origin at (0, -1) makes

possible the determination of particular solutions by separation of variables.

The complementary solutions can again be found by complex variable

techniques using the function

WC(Z Z x i'Y) ='pe + V (50)

-16-



where 3 1 - M' for subsonic flow.

The results for both cases are given in Levy (loc. cit. ). It will be

sufficient here to quote the result for the pressure on the single wall in the

single wire case which is:

lP(X,O) =- l(-) Z , 't .  -L X in i- -t- . ,ta -

2 16 6+102-

xt (51)

This pressure distribution and that for the dipole case are shown in Figs.

3 and 4 for y = 1.4. This value has been chosen to emphasize the heating

of the gas; however, graphs for -y 1. 0 (drawn to emphasize the force

effect) are given in Levy (loc. cit. ). The points to note are first, that-1
in both cases the pressure again dies like x , and second, that as in all

cases of linearized compressible flow, the pressure change increases

markedly as the flow approaches sonic velocity.

Morioka (loc. cit. ) has also obtained explicit solutions to the dipole

case both for the subsonic flow discussed here and for the supersonic flow

to be treated in the next section. In both cases, the results differ in detail

from those of Levy. However, it is suspected that the differences may be

due to nothing more than misprints.

V. SUPERSONIC PROBLEMS

When the flow is supersonic, the problems under consideration can

be treated by the method of characteristics. Introducing

(5-)
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where, for supersonic flow, P2 = M 2 _ 1, Eqs. (18) and (26) become

by~*Y~ (54)

When there is just a single plate at y = 0 the problem has a simple

solution for arbitrary field. On the wall, since v = 0, the pressure is just

+ L -M1 7M (K41-t), 4 - t - M d

so (56)
This expression has been evaluated for the magnetic fields discussed

in the section on subsonic flow. Only the single wire result will be quoted

here; it is

A (x'+') (56)

This and the corresponding result for the linear dipole are again

shown in Figs. 3 and 4. As might be expected, the symmetry present in

the subsonic case is absent for supersonic flow, while the distant pressure

on the wall falls off in a manner related to the fall in the magnetic field.

In fact, as can be seen from Eq. (55), if the magnetic field were confined

to a finite region in the neighborhood of the origin, the pressure on the

wall would vanish exactly at points sufficiently far downstream so that the

incoming characteristic would lie entirely outside the field region.

-20-



VI. VARIABLE CONDUCTIVITY PROBLEMS

Apart from problems involving physical boundaries, an interesting

and in many ways realistic problem is that in which the conductivity is

allowed to vary with position. It has been found possible to extend the

solution for constant conductivity developed in this paper to the case where

the conductivity is variable under the following conditions: first, for the

supersonic case, with only one bounding surface at y = 0, the conductivity

may vary in an arbitrary manner with x and y. The pressure on the wall

may then be found directly as in Eq. (55) with the function a (x, y) included

in the integral. Second, for the subsonic case, again with only one bounding

surface at y = 0, solutions may be constructed when a is a function of y

only. This result will be demonstrated for the incompressible case, but

the extension to subsonic Mach numbers is immediate.

Consider first the restricted problem where the conductivity is

constant (c = 1, say) for 0 < y < H, and vanishes for y > H. The relevant

equations are

i "I0- > V, ( 57)

0 P z ~y>H1- - 0 "/ 18
-y 6y 11(58)

Let subscripts I and 2 refer to the region 0 < y < H and y> H. Then, in

Region 1, the particular solution given in Eqs. (29) and (30) is applicable.

This may be referred to as (vp 1 , pp1 ). Next, define the complex function

FWx = PPt (N,H) + *tVpl (X, H) (9

It is now required to find a pair of complex functions w,(z) = p, + iv, and

w2 (z) = P2 + iv2 such that wl(z) is analytic in Region 1 and w2 (z) is analytic

-21-



in Region 2 and such that

, +(Y H ) W, (K +i 14)+F() (60)

It is convenient to require that w I should also be analytic for y < 0. Then

the solution to this problem is

wj (z)= F FM d

(61)

WZ f--f - Z
(62)

where CI and C 2 are large semi-circles having the line y= H for diameter

and enclosing respectively the regions y < H and y > H. At this stage the

solution in Region 1 may be written symbolically as (Ppl' vpl) + w l ' and

in Region 2 the solution is w2 . Both p and v are now continuous across the

line y= H, but the condition v = 0 on y = 0 has not yet been met. To

accomplish this, it is only necessary to introduce a function w (z), analytic

in y > 0, and such that

-OW, t VP' 'C 42,,, I = 0 o~n y = (63(63)

and the final solution is now given by

(PPI, VP) +W, +W O<y<H

'z + W - > H(64)

Two illustrative examples of this procedure are given in Levy (loc. cit. ),

but will not be quoted here.

Now consider the case where a is an arbitrary function of y. Define

PH(X, y, H), vH(x, y, H) to be the solution to a problem with a given

-22-



magnetic field in which a = 1 for y < H and a = 0 for y > H. These quantities

are just those whose derivation was explained above. Then the required

solution is

P(X ,Y))V(X, Y) = O ) [p4(x,y,,O)I v H (YxY, o)1

" f[,, (x, YH), vH (x,y, H) VA 44
(65)

To prove that this is indeed the required solution, note first that since all

the solutions (pH' vH) are continuous for y > 0 and give vanishing normal

velocity at the wall, the integrated solution Eq. (65) also has these properties.

It remains to show that Eq. (65) satisfies the appropriate differential

equations. Taking Eq. (57) for example

f (66)

But

C)vH aPH 6x 6xy (H >'V)

5X- ( V (67)

Thus

21% + a o~O) b~ 6 p H) 'Yxb

(68)

as required; similarly for Eq. (58).
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VII. CONCLUSIONS

A variety of small perturbation magnetohydrodynamic flow problems

have been solved by methods which present the results in an easily assimi-

lable form. A few have been presented in detail here, others referred to.

All these problems could, in principle, have been solved by the more widely

applicable transform methods, but the results obtained by such methods are

rarely suitable for more than numerical computation of a few cases. In

the simple cases quoted here, the effects of compressibility and the effects

of different values of y are readily visible together with the effects of

variable conductivity (as specified in the last section).

The general nature of the results is not, on the whole, surprising,

but tends to agree with other work dealing with similar problems by more

involved techniques. However, the relative importance of the electro-

magnetic and the induced pressure forces is brought out clearly. More

specifically, there is a force on the wall due to the induced pressure field

which, like the electromagnetic force on the coil, is of the first order in

the interaction parameter. In the problems considered in this paper, the

nature of the boundary has the obvious result that this pressure force can

only contribute a lift, but it is certainly true that for bodies not consisting

only of planes parallel to the flow, the induced pressure would also con-

tribute to the drag. In the special configurations considered here, for

subsonic flows, the pressure distribution is symmetrical about the wire

or dipole; clearly this will only happen for highly symmetrical configurations

and has no general validity. In addition to the net forces exerted by the

pressure distribution, a resultant moment will also be found in most cases.

Reference to Fig. 4 shows the interesting result that, for the case considered,

the moment would appear to be "nose down" for subsonic flow, and "nose

up" for supersonic flow.

Finally, it should be emphasized that the weakest point in this, as

in all comparable analyses, is the assumption (for compressible flows) of

uniform scalar conductivity. It is hoped that in future problems of this

nature it will prove possible to treat the conductivity as a realistic function

of the temperature in order to obtain results more closely representative

of real flows.
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